Multiport Series: SN5090

VNAs available in 6-, 8-, 10-. 12-, 14-, and 16-ports

- Frequency range: 300 kHz 9 GHz
- Wide output power range: -45 dBm to +10 dBm
- Dynamic range: 140 dB typ (10 Hz IFBW)
- Measurement time per point: 24 µs per point, min typ.
- Time domain and gating conversion included
- Frequency offset mode, including vector mixer calibration measurements
- Up to 500,001 measurement points
- Precision calibration methods and automatic calibration

SN5090 Preliminary Specifications

Primary Specifications³

Impedance	50 Ohm
Test port connector	type N, female
Number of test ports	6, 8, 10, 12, 14, 16
Frequency range	300 kHz to 9 GHz
Full frequency accuracy	±5·10 ⁻⁶
Frequency resolution	1 Hz
Number of measurement points	2 to 500,001
Measurement bandwidths (with 1/1.5/2/3/5/7 steps)	1 Hz to 300 kHz
Dynamic range ²	
300 kHz to 5 MHz	110 dB (125 dB typ.)
5 MHz to 6 GHz	138 dB (140 dB typ.)
6 GHz to 9 GHz	125 dB (130 dB typ.)

Measurement Accuracy

Accuracy of transmission measurements ⁴	Magnitude / Phase
300 kHz to 5 MHz	
0 dB to +10 dB	±0.2 dB / ±2°
-30 dB to 0 dB	±0.1 dB / ±1°
-50 dB to -30 dB	±0.2 dB / ±2°
-70 dB to -50 dB	±1.0 dB / ±6°
5 MHz to 6 GHz	
0 dB to +10 dB	±0.2 dB / ±2°
-60 dB to 0 dB	±0.1 dB / ±1°
-80 dB to -60 dB	±0.2 dB / ±2°
-98 dB to -80 dB	±1.0 dB / ±6°
6 GHz to 9 GHz	
0 dB to +10 dB	±0.2 dB / ±2°
-55 dB to 0 dB	±0.1 dB / ±1°
-75 dB to -55 dB	±0.2 dB / ±2°
-93 dB to -75 dB	±1.0 dB / ±6°
Accuracy of reflection measurements⁵	Magnitude / Phase
-15 dB to 0 dB	±0.4 dB / ±3°
-25 dB to -15 dB	±1.0 dB / ±6°
-35 dB to -25 dB	±3.0 dB / ±20°
Trace noise magnitude (IF bandwidth 3 kHz)	4
300 kHz to 6 GHz	0.002 dB rms
6 GHz to 9 GHz	0.004 dB rms
Temperature dependence	
300 kHz to 6 GHz	0.02 dB/°C
6 GHz to 9 GHz	0.04 dB/°C

Effective System Data

300 kHz to 9 GHz	
Directivity	46 dB
Source match	40 dB
Load match	46 dB
Reflection tracking	±0.10 dB
Transmission tracking	±0.08 dB

Uncorrected System Performance

300 kHz to 6 GHz	
Directivity	15 dB
Source match	15 dB
Load match	15 dB
6 GHz to 9 GHz	
Directivity	10 dB
Source match	15 dB
Load match	15 dB

Test Port Output

Power range	
300 kHz to 6 GHz	-45 dBm to +10 dBm
6 GHz to 9 GHz	-45 dBm to +2 dBm
Power accuracy	±1.5 dB
Power resolution	0.05 dB

[1] All specifications subject to change without notice. [2] The dynamic range is defined as the difference between the specified maximum power level and the specified noise floor. This specification applies at 10 Hz IF bandwidth. [3] Reflection and transmission measurement accuracy applies over the temperature range of $(73 \pm 9)^\circ$ F or $(23 \pm 5)^\circ$ C after 40 minutes of warming-up, with less than 1 °C deviation from the full 2-port calibration temperature, at output power of 0 dBm. Frequency points have to be identical for measurement and calibration (no interpolation allowed). [4] Transmission specifications are based on a matched DUT, and IF bandwidth of 10 Hz. [5] Reflection specifications are based on an isolating DUT. [6] Specification applies over entire frequency range, at output power of 0 dBm. [7] Display update: OFF. © Copper Mountain Technologies - www.coppermountaintech.com - Rev. 2022Q2

Test Port Input

Noise floor	
300 kHz to 5 MHz	-110 dBm/Hz
5 MHz to 6 GHz	-138 dBm/Hz
6 GHz to 9 GHz	-133 dBm/Hz
Damage level	+26 dBm
Damage DC voltage	35 V

Measurement Speed

Time per point	24 µs typ.	
Port switchover time	200 μs	
Typical cycle time vs number of measurement points ⁷		
Number of points (IF bandwidth 300 kHz)	Uncorrected (1-port)	2-port calibration
51	4	8
201	9	17
401	14	28
1601	40.1	68.9

Frequency Reference Input

Port	Ref IN 10 MHz
External reference frequency	10 MHz
Input level	-3 dBm to 3 dBm
Input impedance	50 Ohm

Frequency Reference Output

Port	Ref OUT 10 MHz
Internal reference frequency	10 MHz
Output reference signal level at 50 Ohm impedance	-1 dBm to 3 dBm
Connector type	BNC, male

Trigger Input

Port	Ext Trig In
Input level	
Low threshold voltage	1.1 V
High threshold voltage	2.6 V
Input level range	0 V to + 5 V
Pulse width	≥2 µs
Polarity	positive or negative

Trigger Output

Port	Ext Trig Out
Maximum output current	20 mA
Output level	
Low level voltage	0.0 to 0.6 V
High level voltage	3.0 to 3.8 V
Polarity	positive or negative
Connector type	BNC, male

System & Power

Operating system	Windows 7 and above
CPU frequency	1.5 GHz
RAM	1 GB
Interface	USB 2.0
Connector type	USB B
Power supply	100-253 V, 50/60 Hz
Power consumption	
SN5090-06	50 W
SN5090-08	60 W
SN5090-10	65 W
SN5090-12	75 W
SN5090-14	80 W
SN5090-16	85 W

Factory Adjustment

|--|

Dimensions

Length	436 mm
Width	425 mm
Height	96 mm
Weight	
SN5090-06	12.8 kg
SN5090-08	12.9 kg
SN5090-10	13.8 kg
SN5090-12	13.9 kg
SN5090-14	14.9 kg
SN5090-16	15.0 kg

Environmental Specifications

Operating temperature	+5 °C to +40 °C (41 °F to 104 °F)
Storage temperature	-50 °C to +70 °C (-58 °F to 158 °F)
Humidity	90 % at 25 °C (77 °F)
Atmospheric pressure	70.0 kPa to 106.7 kPa

Technology is supposed to move. It's supposed to change and update and progress. It's not meant to sit stagnant year after year simply because that's how things have always been done.

The engineers at Copper Mountain Technologies are creative problem solvers. They know the people using VNAs don't just need one giant machine in a lab. They know that VNAs are needed in the field, requiring portability and flexibility. Data needs to be quickly transfered, and a test setup needs to be easily automated and recalled for various applications. The engineers at Copper Mountain Technologies are rethinking the way VNAs are developed and used.

Copper Mountain Technologies' VNAs are designed to work with the Windows or Linux PC you already use via USB interface. After installing the test software, you have a top-quality VNA at a fraction of the cost of a traditional analyzer. The result is a faster, more effective test process that fits into the modern workspace. This is the creativity that makes Copper Mountain Technologies stand out above the crowd.

We're creative. We're problem solvers.

Multiport VNAs Overview

	SN5090-6	SN5090-8	SN5090-10	SN5090-12	SN5090-14	SN5090-16
Frequency Range	300 kHz to 9 GHz					
Number of Ports	6 ports	8 ports	10 ports	12 ports	14 ports	16 ports

631 E. New York Street Indianapolis, IN 46202

United States: +1.317.222.5400 APAC: +65.63.23.6546 Latin America: +1.954.706.5920 EMEA: +44 75 03 69 21 13